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Abstract
The introduction of computational resources at the network 
edge allows application designers to offload computation from 
clients and/or servers, thereby reducing response latency and 
backbone bandwidth. More fundamentally, edge-computing 
moves applications from a client-server model to a client-edge-
server model. While this is an attractive paradigm for many 
use cases, it raises the question of how to design client-edge-
server systems so they can tolerate edge failures and client 
mobility. This is particularly challenging when edge processing 
is strongly stateful. In this paper we propose a design for meet-
ing this challenge called the Client-Edge-Server for Stateful 
Network Applications (CESSNA).

CCS Concepts
• Networks → Programming interfaces; • Computer sys-
tems organization → Fault-tolerant network topologies.
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1 Introduction
Edge computing has recently entered the hype cycle, but it is 
important to remember that, with Akamai being founded in 
1998, we have had edge computing in the form of CDNs since
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soon after the Internet went public. In recent years, however,
we have seen the emergence of a new and more varied gen-
eration of edge computing, with the likes of Apple, Google,
Netflix, and other major content providers establishing their
own edge infrastructures, and commercial offerings such as
AWS Lambda@Edge, Cloudflare Workers, Akamai Cloudlet,
Fastly Edge Compute Platform, and Azure Edge Functions
allowing tenants to deploy computation at the edge.

This nontrivial computation is being placed at the network
edge1 for many reasons, including: lower-latency responses
to clients (such as in games and content provision), lower
bandwidth demands on the backbone (such as in IoT and
some video applications), and increased privacy where the
edge handles information that clients do not want seen by
the backend server (which arises in some video and IoT
applications).

Earlier uses of edge computing such as CDNs were either
stateless or soft-state, so their correctness and reasonable
performance did not depend on the edge retaining any state.2
However, many of the new uses of edge computing – such
as games, video analytics, and IoT – are strongly stateful
in the sense that either the correctness of the application,
or its ability to achieve reasonable performance, requires
that the edge state be maintained. Applications are strongly
stateful if when the edge state is lost: (i) the application
correctness requires that the state be reconstructed and (ii)
that reconstruction (if possible at all within the application’s
normal operation) incurs a substantial performance penalty.
Being strongly stateful poses a problem when an edge fails
and another edge is available (so that connectivity can be re-
established), but the state from the failed edge is not present
on the new edge. We address this challenge in the context of
client-server network services.
1In this work we use the term edge to describe any application-level process-
ing node that is placed between a client and a server. Such an edge could
be placed, for example, in a branch office, an ISP central office, or a factory
floor.
2Of course, the raison d’être of CDNs is to cache state (i.e., content), but if
that state were deleted it would merely result in a cache miss and the request
would be forwarded to the origin site. While the resulting performance is
not optimal, it is still within normal operational bounds since cache misses
are not rare events.
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Typically the client-server paradigm is built around the
notion of a client session (i.e., a client’s ongoing interaction
with the server). Inserting a strongly stateful edge to improve
the performance of a client’s session turns the client-server
paradigm into a client-edge-server paradigm. With the origi-
nal client-server paradigm, fate sharing is assumed to exist
between the session and the client and server, such that if
either the client or server dies, the session is terminated.
While there are multiple techniques that have been devel-
oped to improve server resilience (e.g., using replicated state
machines) and client resilience (e.g., using multihoming to
allow clients to survive some types of network outages), the
lifetime of a session is still fundamentally tied to both the
client and server being available.
In the new client-edge-server paradigm with a strongly

stateful edge, the session’s fate is now shared between all
three entities, in that if any of the three stops functioning,
the session cannot continue (at least not without a significant
performance penalty). While the session’s reliance on the
client and server is inherent, the reliance on the edge is
problematic since an edge failure can terminate a session
even when the client and server remain alive and another
edge is available to provide connectivity. We note here that
the problem of fault-tolerance is also relevant to the case of
client mobility; as clients move, they may need to change the
edge to which they connect. While there are techniques for
smoothly moving the edge state to follow the client, in the
worst case (where such state migrations are not implemented
or fail to complete), this poses the same challenge as an edge
failure.

To make our discussion of how best to provide fault toler-
ance for strongly stateful edge computing more concrete, we
present a video analytics application as a motivating exam-
ple; this example did not come from our lab, but instead was
brought to us by the team who has deployed this application
in production and had struggled with the problem of edge
failures. Many video analytics frameworks rely on edge com-
puting to minimize the amount of data transferred from a
camera to the backend servers (typically in datacenters). The
savings can be significant because many video frames con-
tain little or no actionable data, so these frames can be safely
filtered. However, this filtering often depends on knowing
what information has previously been sent to the backend
servers. If the state about this previously sent information is
lost, then the video analytics application must stop filtering
at the edge (or stop forwarding traffic completely) until it
can restore enough shared state between the edge and the
server so that filtering can resume. As we explain later, for
the application we consider, this can interrupt video service
for several minutes.

To provide uninterrupted service for this and other strongly
stateful applications, we need a mechanism to recover from

edge failures that ensures correctness and provides reason-
ably good performance. We propose a general purpose solu-
tion that uses message replay and checkpointing. These are,
of course, not novel techniques, but our main contribution
is to adapt these techniques to the edge context and thereby
provide an effective solution for the real problem of edge
fault-tolerance.
To achieve this solution, we first identify a consistency

guarantee that we refer to as output message consistency
that applies to the client-edge-server paradigm. We then
describe the design and implementation of CESSNA (Client-
Edge-Server for Stateful Network Applications), which is an
application framework that provides output message con-
sistency for each application session. We designed CESSNA
to require minimal modifications to application logic, and
thus any client-edge-server application can readily adopt
CESSNA, and be tolerant to failures at the edge.

We have implemented two prototypes of CESSNA, using
two different sets of technologies: The first, Container Iso-
lated CESSNA (CI-CESSNA) uses Docker, an off-the-shelf
Container platform, and provides an Edge API based on
Python. This version is designed to minimize the number of
changes required when adopting CESSNA, but this ease of
adoption comes at a slight increase in overheads. The second,
Software Isolated CESSNA (SI-CESSNA), requires applica-
tions to make use of specialized CESSNA data structures,
which in turn allow us to reduce application overhead. We
have implemented versions of SI-CESSNA for both Rust and
C#. In addition to measuring the SI-CESSNA performance
with our video analytics example, we also deployed both the
SI-CESSNA and CI-CESSNA implementations in multiple
locations worldwide and ran several other example edge
applications. We discuss our correctness guarantees, and
present experimental results to show that CESSNA provides
these guarantees with minimal performance overhead in
the absence of failures, and reasonable recovery times when
there are failures.

2 Background and Related Work
Before delving into our design, we first describe some rele-
vant background about how the edge is currently being used
and about the various mechanisms now used to provide fault
tolerance.

2.1 Current Edge Computing Efforts
We start by briefly discussing the various forms of shared
edges (i.e., edge computing services offered to tenants) cur-
rently available, along with a quick review of special-purpose
edge computing.
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Content delivery networks (CDNs): CDNs such as
Akamai, Cloudflare, Fastly, Azure CDN, and Amazon Cloud-
Front represent the earliest attempts to use resources at the
network edge in order to improve application performance.
Caching content in the network benefits three parties: the
client’s ISP, who now has to transfer a smaller quantity of
data over the network core; the content provider, who can
more easily scale to larger number of clients; and clients,
who experience lower latency when accessing content. As a
result, CDNs have been widely adopted, and form a core com-
ponent of the Internet infrastructure. CDN caches however
offer little in terms of general computational capabilities.

Cloudlets: Cloudlets [29, 30] is an academic project in
which computation is performed on servers at the edge of the
network. Cloudlets were originally envisioned to augment
the capabilities of mobile clients, but the Cloudlet compu-
tational model is general and has been adopted by a few
companies including Akamai [2]. The Cloudlet design places
four main requirements on these offerings, one of which
explicitly requires that the edge only contain soft-state –
state whose loss does not impair the correctness of the ap-
plication. The authors state that this requirement simplifies
management, in particular simplifying the task of handling
client mobility and failures. While some recent efforts [5, 18]
have looked at using VM live migration in order to reduce
the impact of lost state during client migration, these efforts
assume that neither the old edge nor the new edge has failed,
and provide migration times on the order of minutes.

Serverless edge offerings: These offerings – such as AWS’s
Lambda@Edge, Azure Function on IoT Edge, and Cloudflare
Workers – allow developers to write serverless applications
that are executed at the edge. Similar to current serverless
offerings, most of these services require the use of cloud
storage services such as blob stores and databases to store
state. Azure’s Durable Functions [14] are an exception to
this rule, allowing functions to persist state locally. In or-
der to do so, Durable Functions require developers to use
short-lived functions called activities in order to manipulate
state. An orchestrator, which can be customized by the devel-
oper, logs the sequence of activities that have been executed.
Durable Functions replay activities in order to recover from
failures or reconstruct state that was lost for other reasons.
Durable Functions therefore do provide mechanisms for re-
covering from edge failures; however, the failure recovery
process requires applications to be restructured in order to
log modification to individual state elements. CESSNA, by
contrast, adopts a more traditional approach to checkpoint
and replay, treating the entire edge process as a single entity,
thus minimizing the application changes needed to provide
fault-tolerance.

Single-application edges: There is a growing trend for in-
serting computation into application-specific edges (in some
cases replacing functionality previously located in the cloud).
Examples include automation technology on factory floors,
and smart-camera and other video analytics applications
[19, 23, 27, 38].

2.2 Fault Tolerance and Message Replay
There is a long history of distributed systems that rely on
replication, checkpointing, and message replay to provide
fault tolerance. In situating our design within this literature
we consider four types of work:

State Machine Replication: Replicated state machines [32]
and closely relatedwork such as viewstamped replication [26]
and virtual synchrony [4] have long been the standard ap-
proach to providing fault tolerance for many services. The
core idea used by these techniques is to deploy several repli-
cas of a service, and then execute messages in the same order
at each replica. The main challenge when using these tech-
niques lies in ensuring that messages are processed in the
same order at all replicas, and this is addressed either through
the use of consensus protocols such as Paxos and Raft, or the
use of group communication primitives like atomic broad-
cast. Standard results in distributed systems [7] show that
both of these approaches are equivalent, and most modern
implementation build on consensus based approaches.

Primary Backup Replication for VMs and Processes:
Auragen 4000 [6], Remus [10], and other systems have relied
on VM and process replication [31] in order to provide fault
tolerance. These systems run multiple replicas of the same
service, and treat one of these replicas as the primary. All
external inputs including messages and interrupts received
by the primary are assigned a processing order and sent
to the replicas. This ensures that all replicas agree on the
external order of events, and replicas can take over when
the primary fails. This approach poses two main challenges:
first it requires multiple active replicas; second, in order
to meet consistency requirements when handling failures,
these systems require that the primary replicate inputs be-
fore releasing any outputs. The former increases resource
requirements, while the later impacts system latency and
throughput.

Record and Replay: Record and replay systems such as Re-
VIRT [12], SMP-ReVIRT [13], and FTMB [34] are designed to
reduce the resource requirements of the previous techniques
by eliminating the need for active replicas. These systems ex-
ecute a single primary as a VM, and periodically checkpoint
the primary’s state. These systems also record all external
inputs between checkpoints. When the primary fails, these
systems recover by first restoring a VM from the last good
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checkpoint, and then replaying all external inputs in order to
produce a replica with the same state as the primary. While
the use of checkpoint and replay eliminates the need for
active replicas, it in turn requires the use of an additional
agent, which must be located in a different failure domain,
that records all inputs to the primary. Existing work assume
that this agent is run on a different server than the primary
in order to meet this requirement.

Why do these techniques not suffice for the edge? We assume
that each edge location has a limited number of servers; this
is both due to economic necessity (there are many more
edges than cloud datacenters) and limitations of available
space, power, and cooling. Thus, techniques such as Remus
would not be appropriate for edges since their use would
require doubling the required compute resources. Moreover,
we assume that one common failure model for the edge is
a complete site failure (as these edge sites are often small
and not equipped with multiple power sources and the like).
Given this assumption, recovering from an edge failure often
requires failing over to a replica at a different edge, and these
edges might only be connected via wide-area networks. Prior
work [18] has made similar assumptions when handling
client mobility. As a result, neither state machine replication
nor primary-backup replication are suited to the edge use
case: recent works including WPaxos [1] and Mencius [21]
report that consensus protocols when run on the wide area
impose per-message latencies of 100-200ms and can only
support 10,000 operations per second or less. While, some
of the recent literature on wide-area replication [15, 22, 35]
have built on conflict-free replicated data types [33] (CRDTs)
in order to address these performance limitations, adopting
CRDT based techniques requires changes to application logic
and a restructuring of application state, and hence these
techniques cannot be used with general applications.

Given these various limitations, for CESSNA we have cho-
sen to adapt the record and replay based mechanisms for the
edge. This requires designing CESSNA so we can survive the
failure of an entire edge location, which obviates most tradi-
tional record and replay designs which store the recordings
nearby. Instead, we rely on the client and server for message
logging since this maximizes the extent of fate sharing; re-
covery is possible if and only if the two endpoints are up
and connected, which is exactly the fate-sharing semantics
that client-server applications have (and which traditional
record and replay solutions do not achieve).

We later define the sufficient correctness requirement for
CESSNA (in Section 3.2), but here we just note that this
consistency model is different than previously discussed
models in the sense that it is defined per session (and not per
application, or for a specific request), and while it is stricter
than eventual consistency, it allows for recovery using replay

based mechanisms, despite the ordering problem that the
edge setting presents. We further elaborate on this aspect in
Section 4.

Relation to other consistency models: Previous work has
looked at several consistency models for distributed data
stores. This includes a variety of weaker models such as AM-
BROSIA [17], Bayou [36], and the proposal by Nightingale
et al [25]; and reformulations of existing models [9]. Consis-
tency models in distributed data stores dictate when updates
are visible to different clients. While we similarly describe
a consistency model in the paper, the goal of our model is
to reason about when updates are stable, i.e., about the state
of an application after failures. These different goals render
these models incomparable in both efficacy and performance.

3 Our Approach
3.1 Computational Model
Our design imposes no restrictions on how clients or servers
are built. In particular, it does not preclude the use of mech-
anisms at the application level for recovering from client or
server failures, or the use of replication or other techniques
to increase the resiliency of the server or client. Our focus
in this paper is preserving correctness after a change at the
edge due to mobility or failure. Thus, in what follows we
assume a single (logical) client and a single (logical) server.
We assume that in the applications we consider both the

client and the server can send packets to the edge, and that
the edge can send packets to both the client and the server.
A client starts a session when it first contacts an edge. All
messages between this client and the edge, and between the
edge and the server that corresponds to this client session, are
considered part of this session. In our model, we assume that
a session can either be terminated explicitly (being torn down
by client or server) or implicitly (i.e., due to client failure,
server failure, or when no functional edge is reachable). We
also assume that communication between clients, edges, and
servers is over TCP connections, so that message delivery is
in-order and all lost messages will be retransmitted.

The Edge We assume that the edge is stateful on a per-
session basis: that is, a new edge process (or set of processes)
is instantiated to handle each client session. We assume that
the edge state for each session depends on the data sent and
received within the session, on the order in which messages
are processed at the edge, and on non-deterministic events
such as timers and thread scheduling. Further, we require
that the edge application software (i.e., the code run at the
edge) be designed so that state updates are atomic and each
message is processed using only one version of the state.
We focus on providing edge fault tolerance on a per-

session basis. We make no assumption on the number of
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edge nodes that can fail. For example, a single edge node can
fail, but entire edge site failures are also possible. We would
like to provide survivability such that as long as at least one
edge node is available, not necessarily geographically close
to the failed edge, the session can be recovered. When a
single edge node fails, we would like support recovery mech-
anisms that recover quickly to a physically co-located edge
node. However, in the case of a complete site failure, in order
to ensure survivability, we would like support recovery to a
completely different site.

Servers We place no restrictions on the behavior of the
server. Similar to the existing client-server paradigm, the
server can service multiple clients simultaneously.

Clients Similarly, we place no restrictions on the behavior
of clients. We assume that clients can be mobile, and as
a result they might connect to different edges over time.
Note, however, that the client-server paradigm assumes that
clients do not interact with other clients directly, but instead
all such interactions are mediated through the server. Thus,
to preserve this, we do not consider interactions between
clients at the edge, and assume that all state at the edge
belongs to a single client-server connection.

3.2 Consistency Requirement
We focus on the case where a client is initially connected to
one edge, but then must switch to another due to the failure
of the first edge or because of client mobility. Our goal is to
ensure that the processing of messages (from either client or
server) at this new edge is consistent with what would have
happened at the old edge if it had continued functioning.

We formally define the required correctness guarantee as
output message consistency: messages emitted by a correctly
recovered edge must be consistent with messages sent by the
original edge before the failure and received by the client or
server. This means that the recovered edge must be restored
to the last committed state – the state at the last time the
failed edge emitted a message that was received by either the
client or the server. Note that our consistency guarantees do
not require that edges be restored to the state right before
failure (or mobility), only to the last committed state. This is
sufficient for achieving output message consistency because
only the last committed state is visible to the client or server.
Moreover, we want to achieve this level of consistency

while maintaining reasonable performance and ensuring
both transparency (client and server logic should not need to
be changed to support edge recovery, though the edge logic
might need to be aware of the recovery mechanism) and
survivability (edge failure does not kill the session, as long as
there exists a reachable edge to fail over to; this edge can be
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Figure 1: The general design of our framework.

physically co-located with the failed edge or in a completely
different site).

4 CESSNA’s Design
In this section we describe the design of CESSNA (illus-
trated in Figure 1). The line of reasoning behind the design
is straightforward. When moving to a new edge, we need
to ensure that, before this new edge processes new packets
from the client or server, it has established the last committed
state of the previous edge (which is the old edge’s state when
it sent the last message that reached the client or server). The
naïve approach to achieving this involves replaying at the
new edge all the messages processed at the old edge before
it reached its last committed state. However, the information
for doing so is dispersed: the client knows which messages
it has sent, the server knows which messages it has sent, but
only the edge knows which of those messages were received,
and in what order they were processed. Moreover, while the
edge knows which messages it has sent, only the client and
server know which of those were received. In addition, only
the edge can capture the state needed to resolve nondeter-
minism in its processing of messages. All of this information
must be effectively and efficiently combined to accomplish
the faithful restoration of the last committed state in the new
edge.
We also must deal with some more practical issues. For

instance, for a mere ordering of the messages to be suffi-
cient, the processing of messages must be atomic (in short,
the processing of messages must be serializable). Also, the
naïve approach would result in an infinitely growing set of
messages that need to be replayed. We use checkpoints in
order to truncate the sequence of messages that need to be
replayed during failure recovery.
These are the issues that are addressed by CESSNA. The

resulting design has two main pieces – the edge platform,
and the client/server platform – which we now describe.
Before doing so, we note that our data plane protocol (to be
described later) provides reliable, ordered, message-oriented
delivery.
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4.1 Edge platform
General Properties: The edge is the only entity that knows

in what order it received messages and what sources of non-
determinism affected the processing of those messages. We
address the first with an interleave log, which records the
order in which messages were processed by the edge appli-
cation. However, many common programming patterns can
introduce nondeterminism (or at least what appears to be
nondeterminism from the perspective of the inputs). The
most obvious of these is any program which utilizes the re-
sults from a random number generator, but can also include
interactions with the OS scheduler (e.g., due to threading),
and using timekeeping functions. The CESSNA edge plat-
form captures these external inputs as events that are added
to the interleave log, so that when replayed at the new edge
it can arrive at the same state as the old edge. To properly
capture all such sources of nondeterminism, we require that
edge applications utilize our edge API, which we show in
Table 1 and describe below.

Every time a message is sent out from the edge, it contains
the incremental update to the interleave log, so with every
message from the edge, at least one of the client and the
server has been sent the most up-to-date interleave log.3 As
we argue more formally in Section 5, this is the key to guar-
anteeing output message consistency. The CESSNA edge
framework adds the CESSNA data plane header to all outgo-
ing packets, and each packet carries incremental logs.
Since the interleave log can grow arbitrarily large over

time, which would require the playback of an arbitrarily long
set of messages, we will periodically take a checkpoint of
the current state so that previous portions of the interleave
log can be truncated. The taking of a checkpoint is entered
into the interleave log as an event, so one can know which
messages were processed after each checkpoint. The check-
point is then sent to the client or server so they can use it in
the recovery process. Checkpoints can be taken with tools
included in Docker [11], KVM [8], and VMware [39]. An
alternative approach is to build edge application code using
explicitly checkpointable data structures. We prototype both
approaches.

In order to identify incoming and outgoing messages, and
to treat messages atomically, we designed the CESSNA data
plane protocol, which is a simple layer-7 encapsulation pro-
tocol. The protocol’s header contains a sequence number
and allows us to attach any updates to the interleave log.
We wrap all messages with this header, which precedes any
layer-7 payload.

3Because we use strong message ordering semantics on the client-edge and
server-edge connections, where messages are read in order, we can use
incremental logs to reconstruct the full logs.

Method Description
send_msg_to_client(msg) Send a message to client
send_msg_to_server(msg) Send a message to server

cache_read(obj_name, [func]) Read an object from cache
set_timeout(func, time) Start a timer

random() Generate random number
now() Retrieve current time

lock_acquire(lock) Acquire a lock
lock_release(lock) Release a lock

Table 1: Methods provided by the Edge Application
API.

We equip the edge with an edge agent, which is the control
plane orchestrator of a single edge. It communicates with
agents in the clients and in the servers, and provisions an
edge application instance for each new session. The term edge
here is flexible, and may refer to a single physical machine
providing edge services, a single rack of such machines, or
several racks – all of which can be managed by a single edge
agent.

Edge API: We designed an edge application API that pro-
vides the methods shown in Table 1. In addition to the meth-
ods described in the table, the API also provides the following
three event handler methods, which are to be overridden by
the application. accept_connection is called when a client
connects. The receipt of messages from the client or server
result in calls to recv_client_msg or recv_server_msg as
appropriate.

The underlying framework maintains connections to both
the client and the server. It runs a control loop that continu-
ally reads available data from these connections and triggers
the appropriate event handler as described above. While
doing that, it maintains the aforementioned interleave log.
Based on the application configuration, the underlying

framework may, after it finishes handling an incoming mes-
sage, request that the edge agent take a checkpoint of the
application. The framework waits until the checkpoint is
taken before reading and handling the next message.4
Nondeterministic operations:We introduce the now and
random methods for retrieving the current time and ran-
dom number generation respectively. When not being used
for replay, these methods call the corresponding underly-
ing runtime’s function, store the result in the interleave log
with identification of the calling thread, and return the re-
sult. We allow timers via a set_timeout method. When the
timer expires, the user-provided function is invoked by the
main thread immediately after the current message (if any)
is finished being processed. The sequence relative to other
events/messages is stored in the interleave log.

4We return to the issue of checkpoints in Section 7, where we note that
checkpoints can be incrementally computed, greatly reducing the time the
framework needs to wait.

258



Making Edge-Computing Resilient SoCC ’20, October 19–21, 2020, Virtual Event, USA

Thread scheduling is another source of nondeterminism.
To capture this, we require that threads be created using
our API, which wraps the underlying runtime’s threading
capabilities but manages thread identifiers and synchronizes
thread startup. The event handlers for accepting connections
and reading messages are only invoked from the main thread
of a CESSNA edge application (though it can then dispatch
messages to other threads). Any thread is free to invoke other
API methods, including the ones used to send messages. If
threads share data, they must use explicit locks (mutexes).
Our lock_acquire method logs every acquire operation to
the interleave log after successful acquisition. Upon replay,
the locks maintain the same order of acquisition. We note
that our API could be extended to include other types of
concurrent data structures and synchronization tools using
the same technique we use for locks.
Edge Cache: Each edge runtime has a shared content cache
that can be used by multiple instances of the same edge
application. In order to guarantee the correctness of a replay
process, the cache is read-only for edge applications. As is
typical behavior for edge caches (e.g., in CDNs and Cloudlets
[29]), the cache fetches missing items from the server, so
every read operation to the cache returns a result.

4.2 Client/Server Platform
There is a very little difference between a client and a server
in our design. A host, either client or server, is just an ap-
plication running atop our host platform, which manages
communication with the edge. Our host platform consists
of a host agent and a connection handler. The host agent is
responsible for edge discovery, establishing a session with
the edge and its management. In case of an edge failure or
client migration, it is also responsible for reestablishing the
session through another edge. The connection handler en-
capsulates outgoing packets to add the CESSNA data plane
header, buffers these messages, decapsulates incoming mes-
sages, and stores the received interleave log.

In client-edge-server applications, the client does not con-
nect directly to a known server, but to an edge – potentially
one of many. Determination of which edge to connect to
may depend on the application, client and edge locations,
and other factors. Existing service discovery techniques, such
as DNS or IP anycast [16, 37] can be used for this purpose.

4.3 Recovery
CESSNA supports multiple forms of recovery, but we begin
with the most basic, where recovery is at a new edge that is
remote and cold (leaving discussion of local and hot recovery
variations until later in the section). These different recovery
mechanisms are complementary, applying to different failure

scenarios (e.g., server or site failures), and can be deployed
in parallel, but all ensure output message consistency.
First, assume that the client notices that the edge has

not been responsive, or is otherwise malfunctioning. The
client then initiates a recovery process by sending a message
to a new edge, which it knows about via some discovery
process (as mentioned above); from this point onward, the
client ignores all subsequent messages from the old edge.
This initiation message contains the sequence number of the
client’s most recent edge checkpoint (if it has one), its current
version of the interleave log (suitably truncated due to the
checkpoint), and the set of messages sent by the client that
are contained in that log (and any more recent messages).
The new edge then sends a message to the server noti-

fying it of the recovery process, and the server responds
with the sequence number of its most recent checkpoint, its
current version of the interleave log, and the set of messages
sent by the server that are contained in that log (and any
more recent messages). Once it is notified of this recovery
process, the server ignores all subsequent messages from
the old edge. The new edge then retrieves the most recent
checkpoint from the client or server, verifies its integrity, and
selects the most recent version of the two interleave logs.
The new edge now restores the checkpoint and replays the
messages and nondeterministic operations from the most
recent interleave log in the proper order. At this point, the
new edge has achieved the last committed state. It then re-
plays any additional messages that it was sent by the client
and server (interleaving them arbitrarily) and announces to
both the client and the server that it is ready to handle new
messages.
The message replay process is described in Algorithm 1.

There are two subtle points. The first is that replaying the
same inputs at the new edge will prompt the new edge to pro-
duce the same outputs as the old edge did when responding
to these events originally. As the CESSNA dataplane protocol
uniquely identifies all messages by sequence number, the
recipient can trivially discard such duplicates. However, for
efficiency, the algorithm simply filters them during replay.
The second subtle aspect is the treatment of nondetermin-
isitic operations. During replay, a calls random or now do not
generate new values, and we instead return values from the
interleave log. Observe that if a value is not logged in the
interleave log, then the operation was not successfully com-
pleted before the last committed state, and we can normally
reexecute this operation. Similarly, callbacks for timers and
cache reads are replayed in the order logged without delay.

CESSNA also maintains the same order of lock acquisition
as indicated in the interleave log. When an edge application
is multithreaded, the interleave log stores the ID of the thread
corresponding to each entry for all types of entries. Upon
replay, the recovery algorithm bases the order of outgoing
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Algorithm 1 Edge application replay algorithm (main
thread)

Input:
- client_order - interleave log known to client
- server_order - interleave log known to server
- client_msgs - client’s message replay
- server_msgs - server’s message replay
- checkpoint_seq - sequence number of the restored checkpoint
- mrc - messages received by client
- mrs - messages received by server
- threads_wait_evt - an event on which all threads but the main
thread are waiting if trying to invoke an API method. Initially
this event is set (so threads wait).

1: Initialize client and server connections
2: Trim client_order, server_order to start from after the entry of check-

point_seq, if exists, or set to [] otherwise.
3: ordering← longest(client_order, server_order)

// Take the longest interleave log provided by both the
// client and the server, starting from after the checkpoint.

4: ordering[thread_id]← split(ordering)
// Per-thread interleave log

5: out_ordering← merge(mrc, mrs)
// Merge log of outgoing messages. Use this log to reorder
// outgoing messages.

6: threads_wait_evt.clear() // Let threads invoke API calls
7: for each idx in ordering[main_thread] do
8: if idx is a timer event then
9: Mark timer as already executed
10: Process timer event immediately
11: else
12: Let msg be the message with index idx in either client_msgs or

server_msgs
13: Replay msg: if replay emits messages, suppress those seen by

client or server (based on mrc, mrs). Reorder emitted messages
based on out_ordering.

14: If replay calls random or now, find result in
ordering[main_thread] and return it. If not found, generate new
result.

15: end if
16: end for
17: Replay all remaining messages in client_msgs and server_msgs, in any in-

terleave order, without output suppression. Also handle waiting events.
18: Wait for all threads to finish going over their ordering
19: Start processing new data from client and server

messages on this information, and blocks threads when nec-
essary to produce the same ordering of output messages as
originally.
Other recovery scenarios: The above describes how we
recover in the most general remote recovery case, when the
location of the new edge was arbitrary and all state was
stored at the client and server. However, for better perfor-
mance, we simultaneously support local recovery, which is
when the new edge is close to the old edge (perhaps even in
the same rack). Local recovery uses a local recovery service,
which is responsible for storing checkpoints, message logs,
and interleave logs for multiple sessions. This service can

be deployed per physical machine, or per rack of multiple
machines. The local recovery service has a direct connection
to the top of rack switch’s tap port, so it can reconstruct
the corresponding TCP sessions and extract incoming and
outgoing CESSNA data plane messages to construct its local
copy of message logs and the interleave log.5 It also receives
checkpoints directly from the edge agent and stores them.
The local recovery process then works in exactly the same
way as the remote recovery process (per session), but utilizes
local checkpoints and logs rather than waiting for client and
server to send these.

CESSNA maintains these two recovery mechanisms side-
by-side during normal operation. Upon recovery, if recover-
ing to a physically close edge, local recovery is used. Other-
wise, remote recovery is selected. To achieve even faster re-
covery, CESSNA provides an optional hot backupmechanism
in which a designated alternate edge is running adjacent to
the active edge. The alternate edge does not process any in-
coming messages, but is updated with every new checkpoint
that is taken. In case of a failure, the alternate edge is ready
to immediately fetch the relevant message and interleave
logs from the local recovery service and then execute the
recovery algorithm, saving the time it takes to start a new
edge application instance and to restore a checkpoint.

5 Formalizing Our Guarantees
The previous discussion of CESSNA’s design has many mov-
ing parts, which obfuscates the properties it can ensure. Here
we collect the various assumptions about our solution, and
summarizewhich properties they collectively guarantee. Due
to space constraints, we do not formally define and prove
these guarantees here, but rather provide an outline through
a short discussion.
An edge application is a state machine, which has an ini-

tial state and a transition function. The latter is merely the
application logic that responds to inputs: messages (from the
client and the server) and events (e.g., thread scheduling and
time based decisions). Our correctness guarantee, which we
call output message consistency, translates to guaranteeing
that upon recovery, CESSNA reinstates a state machine with
the same initial state and transition function (i.e., same appli-
cation), positioned at the last committed state of the original
state machine before it failed. We define the last commit-
ted state as one where transitioning to the state produced
a message that was successfully received by the client or
serve.

5We assume that if TLS is used, it is terminated before the ToR switch of the
edge application, as done by Google [20] and others. ToR tap port access is
a requirement for using CESSNA’s local recovery option though, as noted
previously, other solutions could be used for local recovery.
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CESSNA provides output message consistency by recon-
structing the lineage of messages and events at the client and
the server. We piggyback updates to the interleave log on
every message sent to client and server. Thus we are guaran-
teed that at least one of them has an up-to-date interleave log,
which can be used to recover state starting from the initial
system state. When recovering from a checkpoint, we merely
replay the interleave log starting from an intermediate point
to arrive at the last committed state.

6 Implementation
In order to evaluate the CESSNA design, we implemented
two prototypes: each of our prototypes targets a different
runtime engine.

The first, which we refer to as Container Isolated CESSNA
(§6.1) is built on top of Docker and relies on Docker’s check-
pointing mechanism [11]. The use of Docker containers sim-
plifies the adoption of CESSNA since the only code changes
required are at the edge, where the changes are needed in or-
der to enable message replay. However, this ease of adoption
comes at the cost of checkpoint overheads: Docker’s check-
pointing mechanisms are agnostic to application semantics,
and thus container checkpoints include not just application
data but also local state from the stack and other information
which is unnecessary for replay.

The second, which we call Software Isolated CESSNA
(§6.2), is built to provide checkpointable data structures.
Programs need to be modified in order to use these check-
pointable data structures, but this reduces checkpoint over-
heads since developers explicitly mark out what data is
semantically essential for recovery, and Software Isolated
CESSNA does not checkpoint any additional data.
We implemented both approaches in order to show that

(a) CESSNA can be employed by existing edge applications
with minimal changes in order to achieve fault tolerance;
and (b) the cost of fault tolerance can be made negligible for
future CESSNA-aware edge applications. We describe both
implementations below.

6.1 Container Isolated CESSNA
(CI-CESSNA)

CI-CESSNA is our transparent implementation that uses
Docker, and can provide fault tolerance for any application
that uses TCP for communication between client, edge, and
server. The client and server code can transparently use CI-
CESSNA via the socket interposition layer and connection
handlers (described below). For the edge code, we require the
application to be written using CESSNA’s Edge API in order
enable message replay, however no changes are required to
the application logic.

Belowwe describe the client, edge, and server components
that comprise CI-CESSNA.

6.1.1 Client/Server Components
Client Socket Interposition Layer: The socket interposi-
tion layer is used to allow unmodified client applications to
use CESSNA transparently. It is a small piece of C++ code
that interposes on socket connect() calls. If the call is asso-
ciated with a CESSNA application, a new session is created
and the interposed code connects to the corresponding local
connection handler.
The interposition layer is a shared library that is loaded

dynamically using the LD_PRELOAD environment variable.
This enables applications written in any language to use
the library with no modification. Only CESSNA applications
need to preload the interposition layer, so it does not affect
other applications on the client machine.
Host Agent: The host agent is responsible for receiving
checkpoints and for managing session life-cycles. The host
agent communicates with its corresponding edge agent out-
of-band, in parallel to the application session using a REST
API over HTTP. Messages are encoded with JSON. In each
host, the host agent is also responsible for starting a connec-
tion handler for each session.
ConnectionHandler:Connection handlers are implemented
as TCP proxies, which implement the CESSNA data plane
protocol and provide the host agents with the outgoing mes-
sage logs and interleave logs extracted from incoming mes-
sages. In a client host, the client application connects to the
TCP proxy, and the TCP proxy connects to the edge on be-
half of the client. In a server host, the TCP proxy accepts
connections from the edge on behalf of the server, and the
TCP proxy connects to the server.

6.1.2 Edge Components
Edge Agent: The edge agent manages checkpoints and com-
munications with the host agents. The edge agent may run
on a different physical machine than the runtime engine, and
can manage multiple Docker engines on multiple physical
machines. Upon receiving a new session request, the edge
agent forwards it to the corresponding server and waits for
a response. When a response arrives, it spins up a container
that runs the application’s edge code.
Checkpoint and Recovery: The edge agent is responsible
for taking checkpoints when requested by an application.
To checkpoint state we use Docker’s checkpoint create
command which pauses the container, takes a checkpoint,
and then resumes the container. To restore the checkpoint,
we use Docker’s start command with the checkpoint flag
and ID. We measure the latency associated with these pro-
cesses in Section 7. The checkpoint files are compressed and,
depending on configuration, sent to the required remote
destination(s).
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6.1.3 Using CI-CESSNA
Edge Application API:We provide a CESSNA edge library
to applications which implements the Edge API described in
Section 4.1. The recovery process is also handled by the Edge
API in case the application starts in a recovery mode. The
edge library also provides additional methods for manag-
ing an application’s life-cycle (e.g., initialization, shutdown).
Programmers can create a new edge application by subclass-
ing the CESSNA application class (provided by the edge
library) and overriding methods for handling edge events
(e.g., recv_client_msg which is invoked when a message is
received).

6.2 Software Isolated CESSNA (SI-CESSNA)
In order to minimize checkpoint size we implemented a li-
brary of checkpointable data structures and communica-
tion primitives. Our original implementation was in Rust,
and used gRPC for communication between client, edge and
server. Subsequently, in order to apply CESSNA’s methods to
the Rocket Video Analytics Platform [3], we used the same
techniques to implement CESSNA in C#. Since Rocket di-
rectly makes use of TCP sockets, our C# implementation also
uses TCP sockets instead of gRPC or other RPC libraries.
In order to use the Rust implementation of SI-CESSNA,

the client and server must be written using the Host API
provided by CESSNA, but no application logic changes are
required. For the C# implementation of SI-CESSNA, the client
and server can transparently use CESSNA using the socket
interposition layer and connection handlers as described
above. When using SI-CESSNA (both Rust and C#), the edge
must be written using CESSNA’s Edge API, and requires the
use CESSNA’s checkpointable data structures.

6.2.1 Client/Server Components
Host API: For the Rust implementation, we provide a Host
API for the client and server that allows them to establish
a session and send and receive gRPC messages. For the C#
implementation, we can use the socket interposition layer as
described in section 6.1.1. The host API also includes modules
to provide the functionalities of the host agent as described
in Section 4.2.

6.2.2 Edge Components
API for improved checkpoint and recovery: The edge
library provides a set of data structures for which we can
compute checkpoints. We checkpoint the application state by
serializing and saving the contents of these data structures,
and restore them by deserializing the stored checkpoints.
Edge applications then must use these data structures to
store any state that persists across messages.

Edge Application API:We provide applications the same
API as described in Section 4.1. In addition, the API pro-
vides the interface for creating and using checkpointable
data structures, which are periodially checkpointed. The re-
covery process is also handled by the Edge API in case the
application starts in a recovery mode.

7 Evaluation
We evaluate CESSNA by addressing two questions, which
we discuss in the sections below: (i) what are the overheads
imposed by CESSNA in the absence of failures, and (ii) how
long does it take to recover when an edge fails. To answer
these questions, we developed four new applications and
ported three existing applications to make use of CESSNA,
which we now describe.

7.1 Applications on CESSNA
We implemented some sample applications atop CI-CESSNA
(denoted by ∗) and some atop SI-CESSNA (denoted by †). For
comparison, we also create a baseline version of each appli-
cation, which runs without CESSNA’s recovery functionality.
The applications we developed are:

Blind Forwarder ∗†: A simple edge application that for-
wards every message it receives to the other side of the edge.
This is not a meaningful edge application, but it allows us to
easily analyze the impact/overhead of CESSNA.

Multi-Player Games: We wrote Battleship∗ and Scrabble†
games from scratch to use the edge to provide fast responses
to user actions and to offload user-related state and com-
putation from the server. Specifically, the edge verifies user
actions (e.g., did the user chose valid words in Scrabble, or
did they hit or miss a ship in Battleship), and synchronizes
the game state with the server. In these applications, the edge
reduces the response latency to the clients. For instance, in
our setting (which we describe later), when submitting a
Scrabble move, the client experienced a median response
latency of 414 µs with an edge, compared to 75.9ms without
an edge.

Existing Games: Wemodified for two existing open-source
multiplayer games, Pong† and Snake∗, by adding a stateful
edge component. All rule checking and game object ren-
dering is done at the edge, improving latency and reducing
computation at the client. The main difference between these
two games and the previous ones is that these are more sim-
ilar to real-life multiplayer games: players are constantly
in motion, and hundreds of messages are sent between the
client, the edge, and the server each second.

Stateful Compression ∗: This edge application offloads com-
pression from clients. Data is sent uncompressed between
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Figure 2: Median overhead of ap-
plications with CI-CESSNA, error
bars drawn at 5th and 95th per-
centile latencies.

Figure 3: Median overhead of ap-
plications with SI-CESSNA, error
bars drawn at 5th and 95th per-
centile latencies.

Figure 4: Latency overhead of the
recovery process when the client,
edge, and server are all in Virginia
and remote recovery is as noted.
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Figure 5: Median time taken to restore background
subtraction state locally and remotely, error bars
drawn at 5th and 95th percentile latencies.
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Figure 6: Recovery time as a function of state size.

the client and the edge, and compressed between the edge
and the server. We also extended this application to support
de/compression of HTTP requests and streamed, chunked
responses (similarly to [24]), and tested it with an unmodi-
fied Apache Tomcat 7 web server and an unmodified web-
browser.

Video Analytics Application †: We extended the
Microsoft Rocket Video Analytics Platform [3] in order to

incorporate fault-tolerance. The Rocket platform is an exten-
sible software stack meant for live analysis of video streams
(e.g., traffic cameras). The platform consists of a pipeline
where the decoded frame is first passed through the OpenCV
background subtraction module, then processed by a chain of
Deep Neural Networks (DNNs). Prior work [19] has shown
that running background subtraction and the first few DNNs
at the edge can significantly reduce the amount of data for-
warded to the cloud, by allowing the pipeline to filter out
frames with no actionable information and by reducing the
number of pixels contained in each frame. In order to do the
latter, the background subtraction module must compute a
scene background, which it does by averaging 120 frames
spread over two minutes of video. Edge failure can result in
a loss of this computed background, and during recovery the
framework must either transfer additional data to the cloud
(thus increasing network requirements) or pause analysis
while the background is recomputed. Since the DNNs used
by Rocket assume that inputs have already gone through an
initial background subtraction step, Rocket currently pauses
analysis while the background is recomputed, and this re-
sults in user-visible interruption. The other modules in this
pipeline, including the DNNs, are all stateless.

In order to enable fault tolerance for Rocket, we modified
the background subtraction module (specifically the OpenCV
and OpenCVSharp libraries) to use SI-CESSNA data struc-
tures for storing the background and intermediate frames
which are periodically averaged in order to compute a new
background. We then use CESSNA to checkpoint this state,
and restore it during failover, thus providing fault tolerance.

While our Rocket edge makes use of CESSNA-SI’s check-
pointable data structures, the current version does not make
use of message replay from the clients (the cameras) because
Rocket assumes the cameras have no computational capabil-
ity (and thus have no ability to store the log and send it to
the edge during recovery). While this precludes perfect state
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recovery, the partial state recovery from the checkpoints is
sufficient to minimize disruption to the analytics pipeline.
This limitation can be easily addressed in the future by the
use of smart cameras.

This set of applications gave us a wide range of test cases.
In the measurements to follow, for brevity we only discuss
one or two of them for each question, but we measured the
performance of all of them and the results presented here
are representative of the broader set.

7.2 Performance Evaluation
We evaluated the performance of CESSNA by deploying it on
multiple machines (of type m5.xlarge) in the AWS network,
in different geographic locations.

7.2.1 What is the overhead in normal operation?
We first look at the overheads imposed by CESSNA in han-
dling packets (where it must extract the message and in-
terleave logs from the header and append to local copies).
Figure 2 shows the median edge processing latency for blind
forwarding and for HTTP compression implemented on CI-
CESSNA. CESSNA’s overhead is well below 100 µs. Figure 3
shows the median edge processing latency for Scrabble im-
plemented on SI-CESSNA. When using SI-CESSNA, the re-
sults include time for generating checkpoints in addition to
time for extracting message and interleave logs. As a result,
SI-CESSNA adds 120 µs of edge processing time, due to the
persisting of board state updates to disk after receiving every
message (discussed below). These per-packet processing de-
lays are minimal compared to typical round-trip times. The
overhead added at the client and the server due to CESSNA’s
encapsulation is negligible.

Checkpointing is amore complicated story. Ideally, a check-
point would be taken when the application begins and then
incrementally updated as each message arrives. This is how
we implemented checkpointing in SI-CESSNA, and the 120 µs
overhead reported above is due to this incremental updating.
However, Docker does not support incremental updating,
so CI-CESSNA must periodically take full checkpoints. As-
suming the checkpoint size is 10MB, this requires freezing
packet processing for roughly 360mswhich is a sizable delay
(suggesting that checkpoints should be taken infrequently).
However, incremental checkpointing is widely available in
other container and VM orchestration systems, and as re-
ported on in [28] this can reduce pause intervals to a low
2–4ms.

We next look at the overhead imposed by SI-CESSNA on
the video analytics application due to checkpointing. For
this experiment, we process a video of frame size 768 × 576
with a total of 795 frames, which requires checkpointing
43MB of state. The median overhead of taking a checkpoint
is 121ms. However, scene backgrounds – which are found by

computing the moving average of input video frames over
time – change slowly over the course of several seconds or
even minutes. As a result one need not checkpoint at the
granularity of a single frame, and checkpointing once every
second or even minute suffices, thus reducing checkpointing
overhead. The time to checkpoint increases linearly as the
checkpoint state size grows.
In terms of bandwidth overhead, our data plane protocol

adds between 12 bytes (host→edge messages) to 36 bytes
(edge→host) to each message. It is currently optimized for
simplicity and not size, but even this straightforward version
adds less than 2% overhead to 1500 byte packets. Messages on
the control plane are rare and short except for checkpoints
(where size is dependent on the application, and on whether
they are incremental or not).

7.2.2 How long does it take to recover?
Figure 4 shows the latency overhead of the recovery process,
for both local and remote recovery. In order to test this, we
used a version of the blind forwarder which stored arbitrary
state of a given size so we can control the size of the snapshot.
We crashed the active edge and measured additional latency
during recovery.

CI-CESSNA: Local recovery with a hot backup incurs a
latency overhead of 21ms (median result), which is mostly
due to our recovery algorithm (Algorithm 1). Local recovery
of a 10MB checkpoint without a hot backup incurs 585ms
overhead. The additional overhead is mainly due to Docker’s
checkpoint restore command (68 %), while the CI-CESSNA
agent incurs another 27 % for preparing the checkpoint, de-
compressing it, and verifying the recovered container before
resuming the session. Remote recovery also adds link laten-
cies.

SI-CESSNA: There is a substantial improvement in recov-
ery using SI-CESSNA: the latency overhead for local recovery
with a hot backup is 0.71ms (median result), while the over-
head for local recovery without a hot backup is 46ms when
restoring a 10MB checkpoint. Remote recovery in the same
AWS region has 183ms latency overhead. The replay process
in this experiment replayed 50 messages. Replaying more
messages would have linearly increased the overhead, at a
rate of about 10s of µs per replayed message; for reasonable
numbers of messages this would add very little additional
delay.

For the video analytics application, our experiment setup
consisted of two machines (each with an Intel Xeon CPU
E5-2660 v3, 128GB RAM) in the same rack. Figure 5 shows
the time it would take to (a) restore a checkpoint stored lo-
cally (from a file), and (b) transmit and restore a checkpoint
at a nearby edge connected via a 1Gbps link with a mea-
sured min RTT of 116 µs. The median overhead to recover
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locally is 83ms and the median overhead to recover remotely
is 450ms. A major component in remote recovery time is the
transmission of the checkpoint (the theoretical transmission
time of the 43MB checkpoint at 1Gbps is 340ms), with the
restore process (from memory) only taking around a median
of 62ms. The time to transmit a checkpoint can be reduced
by either compressing checkpoints or using faster links.

Figures 6a and 6b show the time for local recovery without
a hot backup as a function of the checkpoint size when using
SI-CESSNA and CI-CESSNA respectively. Recovery time for
both grows linearly with increase in checkpoint size. In our
approach, checkpoints only capture state associated with a
single session, so we expect that checkpoints could be small
in many cases, leading to reasonable recovery times.

7.3 Summary and Discussion
Our results suggest that CESSNA can support a wide range
of applications, that stateful processing can be beneficial,
and that the performance overheads can be reasonable. For
instance, SI-CESSNA has low packet processing overheads
(even while continuously taking checkpoints), and can re-
cover from failure in less than 1ms with a local hot standby,
and in less than 50ms for a local cold standby. However, SI-
CESSNA requires applications to be written in a supported
language (at present C# or Rust), which may hinder adoption.
CI-CESSNA is easier to adopt as it imposes no limitation

on the choice of application language for the client and the
server (the edge API for CI-CESSNA is currently provided
only in Python). The packet processing latencies remain low,
but the checkpoint delays can be substantial, and in turn the
recovery delays are similarly inflated by Docker’s slow pro-
cessing of checkpoints. However, if failures are infrequent,
these delays might be tolerable.

Deployment and Scalability Since CESSNA is based on
sessions, it handles each client-edge-server session indepen-
dently of other sessions. Therefore, it is relatively simple to
deploy and scale. Standard load balancing techniques can be
used to select an edge machine given a new session request.
A single edge agent can manage edge sessions on multiple
physical machines. Moreover, if migration of an existing ses-
sion is needed, the process is inherently supported as the
existing edge process can be killed and a new one will au-
tomatically recover and continue to serve the application
(with some transient delay due to the recovery process as
described above).

8 Conclusion
While strongly stateful edge computation is already in use,
its correctness and reasonable performance under failure and
mobility is typically not guaranteed by current approaches.

This paper proposes a framework, applicable to any session-
oriented application whose edge obeys our requirements
from clients and servers, that provides correctness and rea-
sonable performance for such applications. Moreover, we
provide two reference implementations for our proposed de-
sign: one shows that our design can be easily deployed using
industry standard runtime engines, but introduces some (rea-
sonable) overheads; the other shows that using an optimized
API and runtime environment leads to significantly lower
performance overheads. Both implementations demonstrate
that message replay and checkpoint based mechanisms can
be adopted to provide fault tolerance at the edge.
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